Ust

Ust Oldfield's Blog

Archiving the Data Lake

In a blog introducing the Data Lake Framework, keen readers will be aware that in the diagram there’s a box titled “ARCHIVE” but it has not been brought up since. The reason why the Archive layer in the data lake has not been discussed is because we’ve been waiting for the Archive Tier in Blob Storage.

To remind readers of the framework and where the archive layer sits in it, here it is again with the archive layer highlighted.

image

The Archive Blob

The Archive access tier in blob storage was made generally available today (13th December 2017) and with it comes the final piece in the puzzle to archiving data from the data lake.

Where Hot and Cool access tiers can be applied at a storage account level, the Archive access tier can only be applied to a blob storage container. To understand why the Archive access tier can only be applied to a container, you need to understand the features of the Archive access tier. It is intended for data that has no or low SLAs for availability within an organisation and the data is stored offline (Hot and Cool access tiers are online). Therefore, it can take up to 15 hours for data to be made online and available. Brining Archive data online is a process called rehydration (fitting for the data lake). If you have lots of blob containers in a storage account, you can archive them and rehydrate them as required, rather than having to rehydrate the entire storage account.

Archive Pattern

An intended use for the Archive access tier is to store raw data that must be preserved, even after it has been fully processed, and does not need to be accessed within 180 days.

Data gets loaded into the RAW area of the data lake, is fully processed through to CURATED, and a copy of the raw data is archived off to a blob container with a Cool access tier applied to it. When the archive cycle comes about, a new Cool access tiered blob container is created and the now old container has its access tier changed to Archive.

For example, our Archive cycle is monthly and we have a Cool access tiered blob container in our storage account called “December 2017”. When data has finished being processed in the Azure Data Lake, the Raw data is archived to this blob container. January comes around, we create a new blob container called “January 2018” with Cool access tier settings and change the access tier of “December 2017” from Cool to Archive.

This data has now been formally achieved and is only available for disaster recovery, auditing or compliance purposes. 




Automating The Deployment of Azure Data Factory Custom Activities

Custom Activities in Azure Data Factory (ADF) are a great way to extend the capabilities of ADF by utilising C# functionality. Custom Activities are useful if you need to move data to/from a data store that ADF does not support, or to transform/process data in a way that isn't supported by Data Factory, as it can be used within an ADF pipeline.

Deploying Custom Activities to ADF is a manual process, which requires many steps. Microsoft’s documentation lists them as:

  • Compile the project. Click Build from the menu and click Build Solution.
  • Launch Windows Explorer, and navigate to bin\debug or bin\release folder depending on the type of build.
  • Create a zip file MyDotNetActivity.zip that contains all the binaries in the \bin\Debug folder. Include the MyDotNetActivity.pdb file so that you get additional details such as line number in the source code that caused the issue if there was a failure.
  • Create a blob container named customactivitycontainer if it does not already exist
  • Upload MyDotNetActivity.zip as a blob to the customactivitycontainer in a general purpose Azure blob storage that is referred to by AzureStorageLinkedService.

The number of steps means that it can take some time to deploy Custom Activities and, because it is a manual process, can contain errors such as missing files or uploading to the wrong storage account.

To avoid that errors and delays caused by a manual deployment, we want to automate as much as possible. Thanks to PowerShell, it’s possible to automate the entire deployment steps.

The script to do this is as follows:

Login-AzureRmAccount

# Parameters
$SourceCodePath = "C:\PathToCustomActivitiesProject\"
$ProjectFile ="CustomActivities.csproj"
$Configuration = "Debug"
#Azure parameters
$StorageAccountName = "storageaccountname"
$ResourceGroupName = "resourcegroupname"
$ContainerName = "blobcontainername"


# Local Variables
$MsBuild = "C:\Program Files (x86)\MSBuild\14.0\Bin\MSBuild.exe";           
$SlnFilePath = $SourceCodePath + $ProjectFile;           
                            
# Prepare the Args for the actual build           
$BuildArgs = @{           
     FilePath = $MsBuild           
     ArgumentList = $SlnFilePath, "/t:rebuild", ("/p:Configuration=" + $Configuration), "/v:minimal"           
     Wait = $true           
     }         

# Start the build           
Start-Process @BuildArgs
# initiate a sleep to avoid zipping up a half built project
Sleep 5

# create zip file

$zipfilename = ($ProjectFile -replace ".csproj", "") + ".zip"

$source = $SourceCodePath + "bin\" + $Configuration
$destination = $SourceCodePath + $zipfilename
if(Test-path $destination) {Remove-item $destination}
Add-Type -assembly "system.io.compression.filesystem"
[io.compression.zipfile]::CreateFromDirectory($Source, $destination)

#create storage account if not exists
$storageAccount = Get-AzureRmStorageAccount -ErrorAction Stop | where-object {$_.StorageAccountName -eq $StorageAccountName}      
if  ( !$storageAccount ) {
     $StorageLocation = (Get-AzureRmResourceGroup -ResourceGroupName $ResourceGroupName).Location
     $StorageType = "Standard_LRS"
     New-AzureRmStorageAccount -ResourceGroupName $ResourceGroupName  -Name $StorageAccountName -Location $StorageLocation -Type $StorageType
}

#create container if not exists
$ContainerObject = Get-AzureStorageContainer -ErrorAction Stop | where-object {$_.Name -eq $ContainerName}
if (!$ContainerObject){
$storagekey = Get-AzureRmStorageAccountKey -ResourceGroupName $ResourceGroupName -Name $StorageAccountName
$context = New-AzureStorageContext -StorageAccountName $StorageAccountName -StorageAccountKey $storagekey.Key1 -Protocol Http
New-AzureStorageContainer -Name $ContainerName -Permission Blob -Context $context
}

# upload to blob
#set default context
Set-AzureRmCurrentStorageAccount -StorageAccountName $StorageAccountName -ResourceGroupName  $ResourceGroupName
Get-AzureRmStorageAccount -ResourceGroupName $ResourceGroupName -Name $StorageAccountName
# Upload file
Set-AzureStorageBlobContent –Container $ContainerName -File $destination


By removing the manual steps in building, zipping and deploying ADF Custom Activities, you remove the risk of something going wrong and you add the reassurance that you have a consistent method of deployment which will hopefully speed up your overall development and deployments.

As always, if you have any questions or comments, do let me know.